

# In search of eye imaging biomarker in dementia moue models:

#### Understanding the role of tau/Aß protein in the retina

Alzheimer Society Research Program Exchange

Da Ma Postdoctoral Research Fellow School of Engineering Science Simon Fraser University

1



CANADA

Ţ.

SFU SIMON FRASER UNIVERSITY

# **Research themes**



# Motivation – Why use retinal imaging for AD

- The retina is an extension of the central nervous system (CNS)
  - Sharing embryonic origin with the brain
  - Anatomically similar

- Functionally connected
- Easier to access and image











# Does Alzheimer's pathology also manifest in the eye?

- Alzheimer's Disease
  - Complex multi-factorial disease, manifest multiple pathologies
  - vascular disruption,
  - Abnormal protein expression and aggregation
  - inflammation-related immune response
  - neural degeneration









## Does Alzheimer's pathology also manifest in the eye?

- Hallmarks of AD two types of toxic proteins:
  - Amyloid precursor protein (APP) => β-Amyloid (Aβ) => plaques
  - Tau: microtubular associated protein (MAP) => hyperphosphorylated (pTau)
    => neurofibrillary tangles





Disease in the Eyes', Frontiers in Neuroscience, 2020

#### Part 1: Imaging Tau pathology in the retina and optical nerve

• Transgenic mouse model with Tau pathology (rTg4510)



6

## **Tauopathy in mouse brain**

• Hyperphosphorylated (pTau) brain staining

- Cortex
- Hippocampus
- Thalamus
- Superior Colliculus
- Optical Track



## Neurodegeneration in the mouse brain





#### **Optical Nerve Volume reduction**





# **Optical Nerve Signal Intensity increase**



## pTau deposition in the retina

• Immunohistochemically-stained retina sample



Retinal Ganglion Cell Layer Inner Plexiform Layer

Inner Nuclear Layer Outer Plexiform Layer Outer Nuclear Layer

Photoreceptor Layer

Retinal pigment epithelium



#### Results – pTau in retina

• pTau in the inner retinal layer of the retina





Tau pTau Nuclear

#### Results – pTau in retina

• pTau positive cell number and intensity



#### pTau immunopositive cytosolic staining cell (%)

#### Intensity of pTau staining (Mean Intensity/Pixel)





Peripheral Neural Retina



Layers

13

#### **Results** – neurodegeneration in retina

- Neuronal cell nuclear density
- Retina layer thickness

**RGCL** Nuclear Density





**INL Nuclear Density** 

Wildtype

rTg4510

\*\*

\*\*\*

Peripheral

**IPL Relative Thickness** 



#### **Summary of findings**



# Patient data of optical nerve volume

 Atrophic changes in optic nerve volume were similarly observed in Dementia patient with Tau pathology (- 36.6 ± 2.6%).



# Project 2: *In vivo* imaging of Aβ pathology in the retina

• Transgenic mouse model with Amyloid pathology (APP/PS1)





# Ex vivo AB immunostaining in the retina

- Significantly higher *ex vivo* retinal Ab immunoreactivity in transgenic mic
- Retinal Aβ increased with age in the transgenic mice, but not in wildtype.



## In vivo retinal fluorescence imaging

• Retinal in vivo Fluorescence After Curcumin Injection Is Higher in transgenic mouse than Wildtype Mice, and increases with age



# Ex vivo Aß immunostaining in the mouse brain

• Retinal in vivo fluorescence correlates with ex vivo cortical A $\beta$  Loads



#### Connection to retinal Aß pathology in human eye

Levels of intracellular and extracellular A<sup>β</sup> retinal deposits were significantly ٠ higher in AD than controls.



# Moving forward

- Integrated non-invasive multi-modal retinal imaging
  - Retinal structural change
    - Optical coherence tomography (OCT)
  - Retinal vascular change
    - Optical coherence tomography angiography (OCTA)

# **AD Pathogenesis model revisited**

- Two-hit hypothesis
  - First hit: **vascular pathology** is an important factor in AD pathogenesis
  - Second hit: Aβ accumulation and hyperphosphorylation of Tau protein
  - Neuronal injury and neurodegeneration



Nelson, A. R. *et al.* Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim. Biophys. Acta - Mol. Basis Dis. 2016

# Multi-model non-invasive retinal imaging

- Optical Coherence Tomography (OCT)
  - Structural OCT
  - OCT Angiography
- Two-photo excited fluorescence imaging
  - Retinal angiography
  - fluorescently-labelled cells





24

# Quantitative retina morphology analysis for optical coherence tomography (OCT)

Deep-learning-based automatic retinal layer segmentation

Layer-wise retinal thickness map





## Acknowledgement

#### Simon Fraser University



Mirza Faisal Beg



Marinko Sarunic

#### **University of British Columbia**



Joanne Matsubara



**Ging-Yuek Robin Hsiung** 

#### **University College London**



Mark Lythgoe



Imre Lengyel



Da Ma



Daniel J. Wahl

hl Sid



Sieun Lee











Roz Whitaker

Ian F

Ian F. Harrison

# Thank you

# Q & A